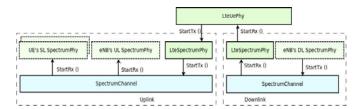
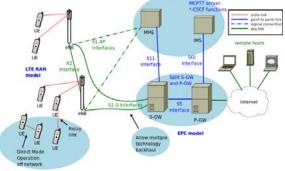


Modeling, Simulation and Performance Evaluation for Future Public Safety Networks using ns-3 LTE module


- The 3rd Generation Partnership Program (3GPP) introduced Device to Device (D2D) Proximity Services (ProSe) in release 12
- · ProSe enabled devices to exchange information directly, i.e., without traversing the eNB
- · ProSe allows the operation in both LTE uplink and public safety specific spectrum
- · Out-of-coverage UEs can autonomously operate in public safety scenarios
- Three D2D functionalities defined under ProSe service 1. Direct communication 2. Direct discovery 3. Synchronization

ns-3 LTE protocol stack and architecture enhancements


EpcEnbApplication EpcEnbNetDevice S1-U NetDevice LteEnbRrc • TX SIB18 • TX SIB19 TX RrcConnectionReconfiguration message
Processing of SidelinkUeInformation LtePdcp LteRic LteEnbMac Direct co • Rx SL-BSR (Mode 1) Resource scheduling (Mode 1) LteEnbPhy

- · Network simulation is a vital tool for researching network performance
- · It bridges the gap between conducting mathematical analysis and network experiments
- · Ns-3 is a powerful tool that by one measure (academic citations) is already the leading packet simulation tool for LTE-based network simulations
- We are intensively collaborating with the National Institute of Standards and Technologies (NIST), the University of Washington and the broader PSCR community to further develop ns-3 as an **accessible, sustainable**, and **usable** packet simulator for PSCR research.

ns-3 LTE EPC model enhancements

· More flexible network configurations

· Start to support on-network modes of MCPTT

18	2		-		1		36W		1	1000	isw.	;		te heat	H	UE	H		eNB		1Ē		MME		Ē	\$	GW		15	PGW	1
A24	ł	-	din e	ref. surfr. o		-			놖			- ;	-			NAS	ł	- 06	erc -	ertral segnal	Ļ.		NAS		ŝ.			1	£.,		
7(95.09	ł	and to and	70744	Of social	÷	arburt .			ł	_		_	10	(UDP)			1				ĥ.			<u> </u>	1				Ľ.,		
-	ł	-			1.			-	H				•			RRC	ł	RRC		51-AP				67942-C		619v2-C		OTPV2-C		679x2-C	
POCP		POCP	11	6.8		6.86	Ш	6.0		679					1	POCP		PDCP	10	UDP+		U/DP*		UDP-		UDP+		UDP*		UDP*	
142		4.0	Ш	upe		ize		LEP		100			i.	8	ł	PLC		RLC	10	1P		10		P		P	ſ			ρ	1
MAC		MAC	1			18		*							1	MAC		MAC	10	Т	I.		П		ł.				1		
Pair		eser.	1				T	1.0	1	T						PHY		PHOY][ł.				ł.				Υ.		
(78) Radio		Recoil stank		10			1	 13 pr				1	1		1	LTE Radio	in t	tecel stack	1	S1-MME	-		1	511 pro	-			53 pret		stack	1

ns-3 LTE sidelink tested scenarios

	UE A	UE B	Direct communication	Direct discovery	Synchronization	Example
Out-of- coverage	Out-of- coverage	Out-of- coverage	Yes RA = Mode 2	Yes RA = Type 1	Yes Autonomous synchronization	UE A UE B
In-coverage single cell	In-coverage	In- coverage	Yes RA = Mode 1 RA = Mode 2	Yes RA = Type 1	Yes Network synchronization	

Model validation (out-of-coverage sc 4000 (kb/s) 3000 0.6 2000 0.4 1000 0 10 20 30 Allocation size (Resource Blo š • 1 (theor retical) • 2 (theoretical) • 3 (theoretical) Dovid 176 (Sie ×1 (simulation)×2 (simulation)×3 (simulation)

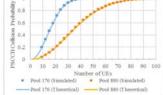
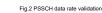


Fig.1 PSCCH resource collision validation

(N_{PSCCH})

nUE

rate


 $P_{Collision} = 1 -$

 $tbSize \times \left\lfloor \frac{(period - PSCCH) \times KTRP}{8 \times NHARQ} \right\rfloor$

period

 $n_{UE}!$


 $\times \frac{n_{UE}}{N_{PSCCH} n_{UE}}$

ı

Table.1 Simulation parameters for PSSCH

40 30 Vumber 20 Always-On --- On-Off -110 -100 -90 -80 -60 -70 syncTxThreshOoC [dBm]

Fig.4 Number of SyncRef UEs after 450 SyncRef selection cycles

Fig.3 Number of discovery periods needed for one UE to discover all other UEs in the group