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Reminder …Reminder …
•A smart beam generation policy can improve the performance of the 
opportunistic schemes in outdoor scenarios with limited number of 
users.

•A power allocation over the transmitted beams also enhances the 
performance of MOB.

•To further boost the efficiency of MOB, a progressively full CSIT from 
the scheduled users can be used to obtain a triangular interference 
cancellation.       
The ability of accurately predicting the channel SNR dominates the performance
of opportunistic beamforming

Other alternatives for CSIT and precoding ?
IT IS AN UNSOLVED PROBLEM

In SU- MIMO: feedback of B
BUT in MU-MIMO: Bi (i=1…N) precoders that depend on Hj
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PartialPartial CSITCSIT

4 IN PRACTICE IT IS A TWO STAGE PROBLEM
6 1. User selection: Decision making process

3Signal Processing for opportunistic identification
3System issues for opportunistic exploitation

6 2. Precoder design
4 DIMENSION REDUCTION & PROJECTION TECHNIQUES

4 TEMPORAL STATISTICAL FEEDBACK: for low mobility
4 SPATIAL STATISTICAL FEEDBACK: for outdoor

Projecting the matrix channel onto one or more basis vectors known to the tx and rx
Ex.: For densily populated areas
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PartialPartial CSITCSIT

4 SPATIAL STATISTICAL FEEDBACK: for outdoor

( ),k k kh CN h R�Channel statistics (macroscopic information of the channel):
Instantaneous information: Example
4 QUANTIZATION-BASED FEEDBACK

It is the first idea that comes into mind when thinking about source compression

Vector quantization entails designing a codebook that encapsulates the essential degrees of 
freedom of the channel and is tailored to the channel model and receiver design. A pure VQ 
approach would attempt to obtain a good approximation of a given channel realization; the 
goal of limited feedback communication, though, is to maximize capacity or minimize bit error 
rate with a few bits of feedback information.

The codebook of each user should be different from others. Otherwise, there is a chance that 
two or more users quantize their channel vectors to the same code vector, which will cause 
a rank loss in the quantized channel matrix composed by those code vectors. To
avoid this situation, we let every user rotate a general codebook by a random unitary matrix that 
is also known at the base station so that the CSIT matrix is full rank with probability one. 
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UserUser SelectionSelection
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•From a multiuser information theoretic perspective: all K users should be served
•M2 upperbounds the optimal number of users with non-zero allocated power
•With linear precoders the #served users is limited by M (DoF at BS)

EXAMPLE 1: OPTIMAL USER SELECTION WITH BLOCK DIAGONALIZATION

Set of all users

Max. # users tb sup.
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UserUser SelectionSelection

EXAMPLE 2: GREEDY USER SELECTION

Capacity-based greedy user selection ? UxK user sets
At each step, re-processing of the linear beamforming (if joint scheduling & beamf.)

1

2 Semi-orthogonal selection
H
k jh h ε≤
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ProblemProblem StatementStatement

Consider linear precoders and decoders

,
k k k k k k j k
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= + +∑y H B s H B s w

First, we address the problem of transmit beamforming Bk=bk

The general SNIR is
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The optimal beamforming strategy in terms of rate is
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But it is difficult to carry out in practice: SNIRk depends on the other users’ bj
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ProblemProblem StatementStatement

The optimal beamforming strategy in terms of rate is
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But it is difficult to carry out in practice: SNIRk depends on the other users’ bj

The transmit precoding optimization problem can be approached under
different assumptions, such as power constraints (total or individual), and
with different performance criteria (e.g. max. SINR, sum rate, BER,…)
The difficulty of designing capacity-optimal downlink precoding, mainly due to
The coupling between power and beamforming and the user ordering, has lead
To several different approaches ranging from transmit power minimization with
SNIR constraints to worst case SINR max. Under power constraint. Duality and
Iterative algorithms are often used in order to provide solutions.
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DualityDuality: : targettarget SNIR  SNIR  

Consider B for BC and BH for MAC
Consider 1H

jj
  = BB bc
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In the BC we have
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, 1

mac
i ii

mac i mac
j ij

j i

PSINR
P
φ

φ
≠

=
+∑

i iSINR γ≥The system of equations

[ ]1 1 (1 )
T i

i
i ii

a a a γ
γ φ

= =
+

a L

[ ]( ) bcdiag− ≥I a Φ p a ( ) T MACdiag − ≥ I a Φ p a



MUMU--MIMOMIMO APSAAPSA Master MeritMaster Merit
1212

DualityDuality: : targettarget SNIR  SNIR  

[ ]( ) bcdiag− ≥I a Φ p a ( ) T MACdiag − ≥ I a Φ p a

The SINR vector γ is feasible for both BC and MAC with linear processing matrix B if 
and only if the non-negative matrix diag(a)Φ has Perron-Frobenious eigenvalue
ρ(diag(a)Φ)<1. In this case, the solutions are

[ ] 1( )bc
opt diag −= −p I a Φ a 1

( )mac T
opt diag

−
 = − p I a Φ a

Moreover , ,
bc mac
opt i opt i

i i

p p=∑ ∑
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Solutions Solutions forfor AssignedAssigned TargetTarget SINRsSINRs

1
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The classical beamforming problem is

Direct method for solution based on semidefinite programming
Alternative based on up-down duality

In the uplink, the MMSE filter maximizes the SINR

Then, the problem involves just minimizing over the power p
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Solutions Solutions forfor AssignedAssigned TargetTarget SINRsSINRs
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The problem

Belongs to the class of standard power control problems [Yates-JSAC95]
Therefore, if the problem is feasible, the iterative power control algorithm is
given by 

If the problem is feasible, MMSE B can be used in the BC and the powers
can be obtained by solving

[ ]( ) bcdiag− ≥I a Φ p a
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Solutions Solutions forfor AssignedAssigned TargetTarget SINRsSINRs

,max min
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When the SINR target vector has all component equal to γ. In practice, in 
order to determine γ opt we shall solve for increasing values of γ, until the value
of the resulting power sum crosses de level P



MUMU--MIMOMIMO APSAAPSA Master MeritMaster Merit
1616

MaximumMaximum sumratesumrate
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Coming back to

We note that the constraint set of all SINR vectors such that the sum power is
constrained is not convex. Applying duality, the problem keeps non-convex.
Heuristic approaches for throughput maximization with linear beamforming
have been proposed.
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MaximumMaximum sumratesumrate
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Coming back to

We note that the constraint set of all SINR vectors such that the sum power is
constrained is not convex. Applying duality, the problem keeps non-convex.
Heuristic approaches for throughput maximization with linear beamforming
have been proposed.
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ZeroZero--ForcingForcing precoderprecoder
4 A standard suboptimal approach providing a promising tradeoff between

complexity and performance is channel inversion or ZF-beamformer.
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The achievable sum rate is given by

If the objective is to maximize the sum rate, the optimum power allocation is

Very appealing

Exhaustive search is needed
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H

B
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ZeroZero--ForcingForcing precoderprecoder

•Note that the sumrate of channel inversion without user selection does not
Increase linearly with M, unlike capacity. User selection gives an important degree
of freedom by selecting group of users with mutually orthogonal spatial signatures.
Then, for large K, ZFBF with user selection is shown to achieve both mux and mud
gain.
•User selection is still an open problem. It is related to the following geometrical
Problem: Given a set of K vectors find an optimal “self-basis” such that the

Gram matrix HHH has maximum determinant.
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ZeroZero--ForcingForcing precoderprecoder

Observe that ZF is not optimal, DPC tells us that it is beneficial to allow some
interference at the receiver to increase the received power of the desired signal.

In general
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ZeroZero--ForcingForcing precoderprecoder

AHB=I
P2P MIMO

Point to Multipoint
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MMSE MMSE precoderprecoder

( ) 1H HB H HH Iλ
−

= +

For rank deficient channels, the performance of the ZF can be improved by
regularization of the pseudo-inverse

( )

21

,

12
2

2

min

. .

B

H H
H

y HBs w

E s y

Ps t E Ps P B H H I H
P Tr F H H

β
β

σβ β

−

−

−

= +

−

 
= ⇒ = + = 

 

More specifically

Note that at low SNR it is equivalent to the Matchef filter transmitter

But the MMSE does not provide parallel and orthogonal
Channels and thus power allocation are not straightforward
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MMSE MMSE precoderprecoder

( ) 1H HB H HH Iλ
−

= +

For rank deficient channels, the performance of the ZF can be improved by
regularization of the pseudo-inverse
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More specifically

Note that at low SNR it is equivalent to the Matchef filter transmitter

But the MMSE does not provide parallel and orthogonal
Channels and thus power allocation are not straightforward
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MMSE MMSE decoderdecoder

+

/
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2 2
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x= xm + e 

e is not a white vector, therefore

≤
1 2e e eR R R

1 2

1 2

1 1 1log log log
2 2 2

x x x

e e e

≥ +
R R R
R R R

Independent decoding of each stream
is capacity lossy !!!

Therefore, by duality MMSE precoder is capacity lossy, because it assumes
independent decoding of each stream
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DFE DFE decoderdecoder -- precoderprecoder

The goal of the DFE is to use a decision-feedback structure to enable the 
independent decoding of x1 and x2. This is accomplished by a diagonalization of the 
MMSE error e, while preserving the “information” in xm.

The diagonalization of the MMSE error can be done via a Block Cholesky
factorization as follows

  
  

   
1122-1 -1 -T

e
22

∆ 0I G
R = G ∆ G G = ∆ =

0 ∆0 I

Then

T= -1 -1 -T

x = Ay + e =
G ∆ G H y +e

In order to decouple the error

1 1
11 22
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− −
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  
= →  
  
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122 -1
e'

2
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eI G

e' = Ge R = ∆
e0 I
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DFE DFE decoderdecoder -- precoderprecoder

Thus e’ is uncorrelated. From equation (*) we get

=-1 -Tx = ∆ G w+(I -G)x + e' x'+ e'

Which gives the DFE structure of the new receiver shown in the figure, 
where the feedback filtering part can be implemented a successive 
interference cancellation due to the triangular structure of G. Note that in 
case Re were factorized following the SVD decomposition, then the 
successive interference cancellation interpretation is lost.



MUMU--MIMOMIMO APSAAPSA Master MeritMaster Merit
2727

DFE DFE decoderdecoder -- precoderprecoder
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DFE DFE decoderdecoder -- precoderprecoder
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The achievable rates are 
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DFE DFE decoderdecoder -- precoderprecoder
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Aside from the SVD decomposition, other matrix factorizations are 
going to be considered along this chapter : Cholesky factorization 
consists in  where A is square and B is a lower triangular matrix; LU 
factorization consists in  where A is square, L is lower triangular, D is 
diagonal and UH is upper triangular; QR factorization   where A does 
not need to be square, Q is orthonormal and R is upper triangular.
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DFE DFE precoderprecoder
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Therefore, matrix B is completed with G-1 implemented in a feedback way, in order to preserve 
capacity as appendix B shows. Thanks to the feedback implementation, the precoder follows a 
Dirty Paper philosophy. For instance, the transmitter first picks a codeword for receiver 2 with 
full (noncausal) knowledge of the codeword intended for receiver 1. Therefore, receiver 2 does 
not see the codeword intended for receiver 1 as interference. Similarly, the codeword for 
receiver 3 is chosen such that receiver 3 does not see the signals intended for receivers 1 and 
2 as interference. This process continues for all K receivers. Receiver 1 subsequently sees the 
signals intended for all other users as interference, receiver 2 sees the signals intended for 
users 3 to K as interference, etc. Note that the ordering of the users clearly matters in such a 
procedure.



MUMU--MIMOMIMO APSAAPSA Master MeritMaster Merit
3131

TheThe QR QR precoderprecoder

= x

.H Q R=

HB Q=with
The MIMO chanel reduces to lower
triangular. This is the link with the DP 
implementation (degraded channel)
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The BC is the m ost challengingThe BC is the m ost challenging

•Linear and non-linear precoding

•Channel State Inform ation feedback

•M ultiuserreceivers

•Userselection and Scheduling strategies

•Pow ercontrol and otherradio resource m anagem ent

•Differentsights

•From inform ation theory pointofview

•From signalprocessing pointofview

•From netw ork/protocolpointofview

… because of downloads bottleneck



MUMU--MIMOMIMO APSAAPSA Master MeritMaster Merit
3434

QoS given

Classical PHY approaches:

- Minimum rate per user

- Average terms

More interesting for operator:

- Outage: to deliver service to the highest possible users and 
satisfy their minimum requirements

SNIR SNIR –– QoSQoS vsvs MUDMUD
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BS Required rate: 
Communication is 

OK

Above rate: 
Communication is 

also OK

Below rate: 
Communication is 

NOT OK

Fairness: PFS
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UpperUpper layerslayers: Cross: Cross--layerlayer designdesign
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Two-User SIMO and MISO Average Spectral Efficiency Regions with a ZF beamformer

Throughput - SIMO multiple access channel
Information-theory rate - SIMO multiple access channel
Throughput - MISO broadcast channel
Information-theory rate - MISO broadcast channel

Importance of throughput: PSR/sec
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The upper layer requirements can be in terms of Maximum packets 
delay

BC channel BC channel –– Upper LayersUpper Layers

ORBf performance 
under maximum delay 
requirements

Example:

The outage concept is present
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BC channel BC channel –– Upper LayersUpper Layers

CAC: Call admission control
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44 Both the mean and the variance are shownBoth the mean and the variance are shown
44 TradeTrade--off can be clearly identifiedoff can be clearly identified

Global performance 
vs. individual needs

44 ExampleExample
Number of antennas
to attain a mean

BC channel BC channel –– Upper LayersUpper Layers

Fairness
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ThroughputThroughput--basedbased
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Total Average Throughput of Low Complexity Spatial Multiplexing and Scheduling

MISO broadcast, M=4
MISO broadcast, M=6
SIMO multiple access, M=4
SIMO multiple access, M=6
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Distributed MIMODistributed MIMO

Outline:Outline:
44MotivationMotivation
44Distributed MIMO scenariosDistributed MIMO scenarios
44Forwarding StrategiesForwarding Strategies
6Regenerative
6Non-Regenerative

44DD--MIMO in satellite communicationsMIMO in satellite communications
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MotivationMotivation (1)(1)

44Distributed MIMODistributed MIMO (virtual array): Obtain the MIMO (virtual array): Obtain the MIMO 
gains using a collection of distributed antennas gains using a collection of distributed antennas 
from multiple single antenna users.from multiple single antenna users.
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MotivationMotivation (2) (2) BenefitsBenefits

44MIMO gains:MIMO gains:
6Diversity: Combat fading, from multi-path 

propagation.
6Beamforming Gains.
6Energy Savings, Capacity increases.

44Repeaters gainsRepeaters gains:: Combat path loss and Combat path loss and 
shadowing.shadowing.

44Hardware gainsHardware gains:: No need of coNo need of co--located located 
antenna elements.antenna elements.

44OthersOthers:: (physical(physical--layer) multilayer) multi--hop routing.hop routing.
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MotivationMotivation (3) (3) DrawbacksDrawbacks

44Share resources (can be difficult to justify).Share resources (can be difficult to justify).
44MIMO gains can’t be  fully obtainedMIMO gains can’t be  fully obtained
6e.g. 2x2 cooperative does not achieve multiplexing gain of 

2.

44Distributed Channel Knowledge.Distributed Channel Knowledge.
44Hardware limitations Hardware limitations 
6Performance depends on the level synchronization 

between nodes: signal, symbol or non-
e.g1: Beamforming: needs signal synchronization
e.g2: Space-Time codes needs symbol synchronization
e.g3: If non-synchronization: Interference

6Half-Duplex terminals
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DistributedDistributed MIMO MIMO ScenariosScenarios (1)(1)

S
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D
   MIMO

44MACMAC--basedbased distributeddistributed MIMOMIMO
6Transmit diversity gain: distributed space-time 

codes or antenna selection.
6Capacity gain:  

3TX CSI: Optimum Beamforming.
3No TX CSI: Multiplexing gain.
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DistributedDistributed MIMO MIMO ScenariosScenarios (2)(2)

44BCBC--basedbased distributeddistributed MIMOMIMO
6Receive diversity gain: antenna selection.
6Capacity gain: 
3With relays synchronization: Maximal ratio combining at the

destination.
3With no relays synchronization: Selection combining.
3Requisites: good relay-destination channels.
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DistributedDistributed MIMO MIMO ScenariosScenarios (3)(3)

44PointPoint--toto--pointpoint distributeddistributed MIMOMIMO
6Transmit/Receive diversity: space-time coding or

antenna selection.
6Capacity gain: beamforming. 

3TX/RX CSI: optimum beamforming
3No TX CSI: space-time coding.
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Forwarding StrategiesForwarding Strategies

44 The relayThe relay:  The virtual MIMO is based on terminals  :  The virtual MIMO is based on terminals  
that are able to forward to destination the information that are able to forward to destination the information 
from the source. from the source. 

44 Two basic relaying techniques: Two basic relaying techniques: 
6 Regenerative: Relays decode, re-encode and transmit.
6 Non-Regenerative: Relays process the received signal 

but not decode.

S

R1

D

1α 1β

0β
( )x m

( )r rx f y=

1

2

d

d

y

y

m: message

f:   relaying function



MUMU--MIMOMIMO APSAAPSA Master MeritMaster Merit
4848

RegenerativeRegenerative

44 Decode and Forward:Decode and Forward: Decode the message and reDecode the message and re--transmit.transmit.
44 Parity ForwardingParity Forwarding: : Decode the message and Decode the message and txtx the parity bits.the parity bits.
6m|s: m message and s parity bits xr(m|s).
6 Relay decode m but tx s. xr(s).

44 Partial Decode and ForwardPartial Decode and Forward: : only a part of the message is relayed, the only a part of the message is relayed, the 
other part is directly transmitted to destination.other part is directly transmitted to destination.
6 First Fase: Source tx x(m1) and relay decode.
6 Second Fase: Source tx x(m2) and Relay tx xr(m1).

Benefits:Benefits:
6 The noise is completely removed at the relays.

DrawbacksDrawbacks
6 The rate is limited by the decoding requirement at the relays. (channel 

between source and relay must be good).
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NonNon--RegenerativeRegenerative

44 Amplify and ForwardAmplify and Forward: : Relay transmits an amplified version of its Relay transmits an amplified version of its 
received signal.received signal.
6 f: xr=a*yr.

6 Simple and cost-less implementation.

44 Compress and ForwardCompress and Forward: : Relay compresses its received signal Relay compresses its received signal 
with certain distortion, and transmits it to destination.with certain distortion, and transmits it to destination.
6 f: Wyner-Ziv compression xr =WZC(yr) .
6 Generally higher computational complexity than DF. 

44 BenefitsBenefits
6 Good if relay is close to the destination node.

44 DrawbacksDrawbacks
6 AF: Noise amplification at the relay.
6 CF: The rate is limited by the channel between relay and 

destination.

S

R1

D

1α
1β

0β
( )x m

( )r rx f y=

1

2

d

d

y

y


